
Web Services: Potential and Future

© Andreas Hart

MMIV/MMV

Universität Koblenz-Landau

Abstract. Web services are the base technology of service integration. To
understand Web services, earlier integration approaches like data flow
integration and data integration are reviewed. It will be found out that service
integration is very similar to the object integration approach. But will service
integration really solve the problems former integration approaches did not?
What is the future of Web services? The collection of so many essential, open
Web service standards available up to now is very promising. Standard software
vendors have already started to adopt the ideas of service integration and are
working on system architectures implementing the Service-oriented
Architecture (SOA), what German software vendor SAP calls Enterprise
Services Architecture (ESA). It will become clear that the Web service
technology supports flexible, maintainable integrated systems. This can even
reduce the gap between technical and business process integration.

Table of Contents

1 Look Back at Data Flow Integration ..1

1.1 The History of Integration...1
1.2 Electronic Data Interchange..3

2 Basics and Principles of Web Services...5
2.1 Web Services at a Glance..5

2.1.1 Object Orientation ...6
2.1.2 Central Repositories...8
2.1.3 Internet Technology...8
2.1.4 Distributed Systems ...9

2.2 Composed Web Services .. 10
2.3 Service Integration.. 13

3 The Future of Web Services .. 15
3.1 Service-oriented Architecture.. 15
3.2 Middleware as a Starting Point.. 16
3.3 Enterprise Services Architecture ... 17

4 Summary .. 21
4.1 Web Services as a Base Technology ... 21
4.2 Conclusion ... 21

References ... 22

Web Services: Potential and Future

 1

1 Look Back at Data Flow Integration

1.1 The History of Integration

Since AT&T introduced the first 300-baud modem in 1962, communication between
remote computers has become more important than ever before. Advancing
communication technology slowly led to loosely coupled distributed systems over the
years, interconnected by the Internet and private networks. Three main concepts for
the technical integration of distributed systems have yet been identified: data flow
integration, data integration and object integration (see also Ferstl et al. 1998).

In the beginning of data communication, temporary point-to-point connections and
simple protocols were used to transfer unstructured data (text or binary files) from one
machine to another. All these transfers had to be initiated and supervised by human
beings. As most data processing was done on a limited number of very expensive
central mainframes, there was little need for further integration – at first. When
required, the applications running on a mainframe could be tightly coupled. This
could be done using techniques the mainframe’s operating system itself offered, e.g.
via shared memory or shared files. But falling hardware prices made communication
between mainframes and the increasing amount of other available computers
affordable and therefore marked the start of the era of data flow integration via public
telephone networks. The aim was to integrate the up to then existing automation
islands spread over different machines.

Data flow integration is the simplest form of integration. Only the relevant data is
transferred with little protocol overhead, so low bandwidths can be used in a very
efficient way. Figure 1 shows an example of a distributed system connected using
data flow integration. Two loosely coupled mainframes in a simple local network
accept temporary point-to-point connections from remote terminals to exchange
structured or unstructured data.

As data flows only contain raw data at application level (above OSI layer no. 7),
the recipient must implicitly know how to handle every different type of data.
Especially in cases when the recipient is not a human being, in other words data
processing at the recipient’s side is fully automated, implementation of hard-coded
interfaces with static processing instructions for any supported data type is needed.
This strongly limits flexibility.

Permanent Connection

Temporary Connection

Fig. 1. Data Flow Integration Example

Web Services: Potential and Future

 2

Though some standards for the interchange of structured business data (EDI) were
introduced, the biggest disadvantage of the early integration approaches remained.
Steadily increasing amounts of data transferred between separated automation islands
soon led to a significant rise in data redundancy. Consequences were errors resulting
from the parallel processing of decentralized data pools managed by independent
applications. With a focus on data integrity, a new integration concept emerged. The
main idea of data integration was to centralize all data back to only a few dedicated
machines.

Data integration was accompanied by three new technological developments:
relational database systems, client/server paradigm and private networks.

The first prototype of a relational database system (System R) was created in the
1970s, the theory going back to the IBM researcher Ted Codd (Committee on
Innovations in Computing and Communications 1999). Commercial products based
on the Structured Query Language (SQL) became available and accepted till the mid-
80s. In a relational database system, data modeling techniques are used to minimize
data redundancy. Data integrity is ensured by the database management system
(DBMS), changes in the database are conducted solely via transactions. Relational
database systems are nowadays highly standardized, for example the query language
SQL is now an international ISO standard.

Separation of data and functions directly resulted in a client/server architecture of a
distributed system, hence a two- or three-layer architecture. Data storage is done by
one or more dedicated machines (two-layer-architecture), and typically user interface
(UI) and business logic are separated, too (three-layer architecture).

The success of the client/server paradigm itself depended on an underlying
network infrastructure, because servers need to be permanent accessible by a large
amount of client computers. Public data networks did not exist at that time, and
permanent point-to-point connections via public telephone networks were far too
expensive. So private data network providers started to extend new value-added
networks (VANs) that could be accessed by customers at lower total costs than the
public telephone network. These VANs also offered additional services, e.g. storing
of messages. Later on, the continuous demand for networking equipment and falling
prices enabled large enterprises to build their own private data networks (‘Intranets’).

Private Network

Private Database
Permanent Connection

Temporary Connection

Private Database

Fig. 2. Example of a data-integrated distributed System

Web Services: Potential and Future

 3

Figure 2 depicts a typical architecture of a data-integrated distributed system from
a single-enterprise perspective. The enterprise data is stored on two database servers
(one of them a mainframe). A second mainframe is available for executing business
logic. All machines are connected via a private network whilst some clients use only
temporary dial-up connections. The central servers nevertheless have to be
permanently connected to the network.

Object integration is the latest approach in technical integration. It can supplement
the data integration concept and is most easily build on top of clean, data-integrated
systems. While data integration addresses the integrity and redundancy of data, object
integration aims at reducing the functional redundancy and organizing object
interactions.

Objects encapsulate functionality (methods) and data (attributes) and communicate
with each other using messages (method calls). An object-integrated system consists
of specialized objects dedicated to data management on the one side, and specialized
objects realizing the system’s functionality on the other side. All these objects are
glued together by a global communication system. So object integration is the first
approach that refers to the structure of a distributed system (data redundancy,
functional redundancy) as well as to its behavior (data integrity, object interactions),
forming a complete technical system model. Practical solutions often reuse existing
relational databases instead of implementing an object-oriented database layer.

The Common Object Request Broker Architecture (CORBA) of the Object
Management Group (OMG), Microsoft’s Distributed Component Object Model
(DCOM) and Sun Java’s Remote Method Invocation (RMI) are implementations of
the object integration approach, as well as Web services are. Object integration in the
context of Web services will be discussed later in chapter 2.3. To illustrate similarities
between the earliest (data flow integration) and latest technical integration concept
(object integration), a closer look on the EDI standard for data flow integration
follows now.

1.2 Electronic Data Interchange

EDI is a generic term for several standards that support automated exchange of
structured business data between computers. Besides some industry standards like
SWIFT or ODETTE, the North American ANSI X12 and the United Nations
EDIFACT are the most important. The EDIFACT standard is the only international
standard among them, which is evolving since the early 1980s. EDI messages are
structured text documents and therefore platform-independent in the main. This is
important for the usage of EDI in distributed systems. In the following, an fragment
of an X12-formatted purchase order, transaction set 850, is shown (Ogbuji 1999):

ST*850*12345
BEG*00*SA*3429**981201
N1*BY*Internet Retailer Inc.*91*RET8999
N1*ST*Internet Retailer Inc.
N3*123 Via Way
N4*Milwaukee*WI*53202
PER*OC*Obi Anozie
PO1**100*EA*1.23*WE*MG*CO633
SE*9*12345

Web Services: Potential and Future

 4

On 1 December 1998, Mr. Anozie Obi ordered 100 units of ‘Fuzzy Dice’ (part no.
C0633) from Internet Retailer Inc., 123 Via Way, Milwaukee WI, 53202 at a price of
$1.23 per unit (order no. 003429).

EDI documents are (with some limitations) readable by human beings, though the
syntax is much more restrictive and error-prone than XML syntax. In fact, EDI
documents can easily be transformed to XML documents. For this example, the XML
document can look like this (Ogbuji 1999):

<?XML version="1.0" encoding="UTF-8"?>
<PurchaseOrder Version="4010">
<PurchaseOrderHeader>
 <TransactionSetHeader X12.ID="850">
 <TransactionSetIDCode code="850"/>
 <TransactionSetControlNumber>12345</TransactionSetControlNumber>
 </TransactionSetHeader>
 <BeginningSegment>
 <PurposeTypeCode Code="00 Original"/>
 <OrderTypeCode Code="SA Stand-alone Order"/>
 <PurchaseOrderNumber>RET8999</PurchaseOrderNumber>
 <PurchaseOrderDate>19981201</PurchaseOrderDate>
 </BeginningSegment>
 <AdminCommunicationsContact>
 <ContactFunctionCode Code="OC Order Contact"/>
 <ContactName>Obi Anozie</ContactName>
 </AdminCommunicationsContact>
</PurchaseOrderHeader>
<PurchaseOrderDetail>
 <Name1InformationLOOP>
 <Name>
 <EntityIdentifierCode Code="BY Buying Party"/>
 <EntityName>Internet Retailer Inc.</EntityName>
 <IdentificationCodeQualifier Code="91 Assigned by Seller"/>
 <IdentificationCode>RET8999</IdentificationCode>
 </Name>
 <Name>
 <EntityIdentifierCode Code="ST Ship To"/>
 <EntityName>Internet Retailer Inc.</EntityName>
 </Name>
 <AddressInformation>123 Via Way</AddressInformation>
 <GeographicLocation>
 <CityName>Milwaukee</CityName>
 <StateProvinceCode>WI</StateProvinceCode>
 <PostalCode>53202</PostalCode>
 </GeographicLocation>
 </Name1InformationLOOP>
 <BaselineItemData>
 <QuantityOrdered>100</QuantityOrdered>
 <Unit Code="EA Each"/>
 <UnitPrice>1.23</UnitPrice>
 <PriceBasis Code="WE Wholesale Price per Each"/>
 <ProductIDQualifier Code="MG Manufacturer Part Number"/>
 <ProductID Description="Fuzzy Dice">CO633</ProductID>
 </BaselineItemData>
</PurchaseOrderDetail>
</PurchaseOrder>

Despite the focus of this paper, one should not make the error to assume that EDI
is already dead. Following wikipedia.org (Wikipedia 2004), 95% of all electronic

Web Services: Potential and Future

 5

commerce transactions still rely on EDI (assumingly non-standard EDI
implementations are included in this number). There might be situations where it
makes sense to transform EDI messages to a XML format, but just a simple
transformation would not be a sufficient incentive for companies to invest in the
improvement of current productive systems. In simple scenarios, for example the
daily upload of turnarounds from the point of sale (POS) to a company’s ERP-system,
EDI might never be replaced.

So what would be new if we additionally implemented an EDI scenario with Web
services? In that case, we would not only send the structured XML data to Internet
Retailer Inc., we would also invoke a Web service operation (an object method) in the
target system, starting the order management process at the same time. Nothing else is
currently done when starting the process with EDI, but in the case of Web services, it
could be done in a standardized way along the whole order process, integrating
different vendor’s applications, ending with shipping and payment (in a flexible, goal-
oriented way), as we will see later (see chapter 2.2). But despite the obvious
advantages of ongoing standardization, it must no be forgotten that compared to data
flow integration, Web services always increase bandwidth usage as well as processing
time due to heavy XML wrapping and processing.

2 Basics and Principles of Web Services

2.1 Web Services at a Glance

‘Definition: A Web service is a software system designed to support interoperable
machine-to-machine interaction over a network. It has an interface described in a
machine-processable format (specifically WSDL). Other systems interact with the
Web service in a manner prescribed by its description using SOAP-messages,
typically conveyed using HTTP with an XML serialization in conjunction with other
Web-related standards.’ (W3C Web Services Architecture Working Group 2004-1)

Web services are a set of technology components and standards that allow
automated communication between loosely coupled distributed objects over a
network. Web services are accepted by most of the big players in the software
industry (e.g. IBM, HP, Sun, Microsoft, BEA Systems, SAP, Oracle, Computer
Associates), so one can almost be sure that Web services will be omnipresent when it
comes to intra- or inter-organizational integration (compare to Hündling et al. 2003).
And he/she might be even surer when hearing that no one of the big players in the
market ever really criticized the main concepts behind Web services.

Web services are built on a foundation of commonly accepted open standards. The
basic standards for technology components in Web services are SOAP, WSDL and
UDDI. There are some other, more sophisticated standards like WS-Coordination,
WS-Transaction, WS-Resource, WS-Policy and BPEL (Business Process Execution
Language), except the latter beyond the scope of this paper.

The Simple Object Access Protocol (SOAP) is a standard for invoking operations
within Web services using XML messages. SOAP version 1.1 was submitted for
standardization to the World Wide Web Consortium (W3C) in March 1999.

Web Services: Potential and Future

 6

As an introductory example, the ‘Daily Dilbert’ service that can return a path to an
image (http://www.esynaps.com/WebServices/DailyDiblert.asmx) is now presented.
This is a simple request/response service. It is invoked using the following SOAP-
message:

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 xmlns:xsd=http://www.w3.org/2001/XMLSchema
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <DailyDilbertImagePath xmlns="http://tempuri.org/" />
 </soap:Body>
</soap:Envelope>

Actually, the remote DailyDilbertImagePath operation is invoked with no
parameters. The following response message (DailyDilbertImagePathResponse) has a
single parameter DailyDilbertImagePathResult containing the URL of the image and
looks like this (* below is a placeholder for the actual URL):

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 xmlns:xsd=http://www.w3.org/2001/XMLSchema
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <DailyDilbertImagePathResponse xmlns="http://tempuri.org/">
 <DailyDilbertImagePathResult> * </DailyDilbertImagePathResult>
 </DailyDilbertImagePathResponse>
 </soap:Body>
</soap:Envelope>

A SOAP message is either a request, response or fault message. It always consists
of an Envelope element that contains an optional Header element and a mandatory
Body element. The Body element comprises further elements determining the affected
operations, plus the appropriate parameters. Very briefly, SOAP is used for the
invocation of remote operations (methods), supplying the name of the operation
called, together with the serialized parameters. The message data is wrapped into
structured XML documents, resulting in human-readable messages.

SOAP is a simple yet powerful protocol supported by W3C and the software
industry. As most Web service standards, it is continuously reviewed and might be
extended in the future.

2.1.1 Object Orientation
Simula 1 (1962-1965) and Simula 67 (1967) were the first two object-oriented
programming languages (Reed 2003). Among other well-known concepts, the basic
idea of the object orientation paradigm is that a system consists of independent
objects, having an inner and an outer view and interacting using messages. Messages
are exchanged so a sender object can use another object’s functionality expressed in
the receiver object’s public interface (its supported data objects and methods). This
functionality is implemented inside the receiver object, falling back upon internal data
objects and internal operations. Internal data objects and operations are not accessible
from the outside other than via the public interface of the object (information hiding).

Web Services: Potential and Future

 7

Distributed objects are objects in a distributed system context (see chapter 2.1.4)
exchanging messages via a joint network. So what about Web services? Is a Web
service really a distributed object?

SOAP messages are structured messages. SOAP messages are sent from a client to
a specific Web service. Operations and data object types a Web service can handle are
defined with the means of Web service standards. The UDDI standard (Universal
Description, Discovery and Integration) for example includes storage of abstract
descriptions of a Web services in a service repository (see chapter 2.1.2). So a Web
service has a well-defined interface, hopefully looking the same as described in the
repository. The interface is hiding a concrete implementation, either done in an
object-oriented programming language like Java or C++, or in any other language,
they can even wrap existing legacy applications, so Web services translate the basic
and most effective ideas of object orientation like information hiding, message
exchange, abstract interfaces and reuse of software components into action.

The concrete implementation being considered a part of a Web service solely
determines if Web services are distributed objects or not. According to the definition
of the W3C Web Services Architecture Working Group given at the beginning of this
chapter, a Web service from their point of view seem to be more a part of the
distributed object shown in Figure 3. The standards for Web services do not extend
beyond the outer view of a distributed object. Hence, the term Web service currently
used by the W3C only refers to a technology that supports ‘interoperable machine-to-
machine interaction over a network’. It is a lightweight approach (Hündling et al.
2003), separated from implementation aspects. The inside of the distributed objects is
not relevant to Web services. Only the outer view needs to be standardized.
Therefore, the interfaces of Web services, as well as syntax and maybe semantics of
messages have been, are, or will be standardized. But it is important to stress that the
W3C’s definition focusing on the outside of distributed objects (and the technical
framework) does not deny their existence. In fact it depends on the scope of the
examination if the distributed objects can be recognized. Generally spoken, a Web
service is a distributed object (compare to Birman 2004).

Web Service

External Data
Object Types Operations/Methods

Implementation

Methods/OperationsInternal Data
Object Types

Messages
Web Service Standards

Fig. 3. Model of a Web Service (adapted from Ferstl et al. 1998)

Web Services: Potential and Future

 8

2.1.2 Central Repositories
System architectures built on Web services rely on central repositories wherein the
interface descriptions of available services are stored. Clients searching for a specific
functionality can browse these Web service repositories to find one or more suitable
services offered by a service provider. Communication is done using SOAP messages
(so a service repository is a service provider, too). There are two important standards
for service repositories: WSDL (Web Services Description Language) and UDDI
(Universal Description, Discovery and Integration).

WSDL is a standard for machine-processable interface description. A WSDL
document is a XML document that provides an abstract description of a Web
service’s functionality and data formats (data object types). Besides these abstract
descriptions, WSDL documents also provide concrete bindings to communication
protocols (e.g. SOAP and HTML) and service implementations, including the location
(e.g. URL) where the service can be reached (Hündling et al. 2003). After accessing
the service description in a WSDL document, a client can then create the appropriate
SOAP message to invoke a particular service (dynamic invocation).

UDDI is a general open standard for functionality, data model and architecture of
Web service repositories (Bellwood et al. 2002). Since 2002, the UDDI standard is
further improved under the Organization for the Advancement of Structured
Information Systems (OASIS). The initial idea behind UDDI was to set up a public
and global yellow pages network to connect businesses, regardless of technology and
infrastructure. Even with possible security risks and legal restrictions not taken into
account, it showed up that not many enterprises or organizations were keen on
exposing their private system functionality and data – often a strategic asset – to the
world. Therefore, up to now only a handful of public repositories exist.

A more realistic approach currently under development (see chapter 3) is to start
within enterprises, building private infrastructures at first. Selected and trusted
business partners can then be included in a second wave. With a critical mass of
private repositories and growing experience in the field of Web services, an
increasing amount of public or semi-public Web services in the consumer area (most
probably behind a Web-based front end) may be the future result. Surely,
interoperability and security have to be asserted and proved before Web services will
really leave the boundaries of private networks.

2.1.3 Internet Technology
Existing public or private network infrastructures can be used for transport of
messages between Web services and between Web services and repositories.
Nowadays these networks are most often based on open Internet standards, TCP/IP
being the most important two of them. TCP and IP are the transport-layer protocols of
the Internet, and they are the base of commonly known Internet services like FTP (file
transfer), HTTP (transport of Web pages) and SMTP (e-mail dispatch). The complete
Internet protocol stack is depicted in figure 4. The Internet protocol stack in essence is
a slight simplification of the Open Systems Interconnection (OSI) reference model
published in 1984.

SOAP messages are usually transported with HTTP, though FTP or SMTP as well
as any other non-Internet protocol can surely be used, too. Web service standards are
built on open Internet standards and hence can get benefit from their popularity. With

Web Services: Potential and Future

 9

Internet and private networks converging and Internet technology being a common
base, Web services are not limited to the Internet; they can easily be introduced on
private networks (‘Intranets’), too.

XML is the other important key to success for Web services. Nearly everything in
Web services is encoded in XML, resulting in human-readable, platform-independent
and language-independent messages.

Web services should not be confused with Internet services (HTTP, FTP…). Web
services are part of an application process (middleware) that can use Internet services
to exchange data or messages; hence they are a level higher than Internet services
(above OSI layer no. 7). That’s why SOAP messages can be transported via HTTP.
EDI messages can be transported via HTTP, too. While EDI messages are virtually
raw data, SOAP messages are sort of more sophisticated (structured) data, but still
data generated directly by some kind of application. This application uses a network
protocol (e.g. an Internet service) to transfer SOAP messages.

Web services should not be confused with the World Wide Web (WWW) either.
The Web is a conglomeration of HTML documents, which are managed by Web
servers. Like Web servers process HTTP requests and send the requested HTML
documents (or not), Web services (‘SOAP servers’) are sending and processing SOAP
messages (or not). There can be a Web server and a Web service, both being an
application and using HTTP as a transfer protocol (notice also figure 5 on the next
page).

As well as open Internet standards like TCP/IP and HTTP unified the Internet and
private networks, Web services have the potential to unify technical integration inside
and in-between enterprises. The position of vendors solely offering proprietary
integration solutions will be weakened with lasting effect.

2.1.4 Distributed Systems
A distributed system is the environment of Web services, supplying an often pre-
existing infrastructure to be used (with little additional costs). The Internet together
with its surrounding private or semi-private networks is one of the biggest distributed
systems ever built. But it is only one possible system, separated from other distributed
systems like military networks or even simple two-node systems connected via public
telephone lines.

A distributed system is defined as a system of two or more computers or processors
with at least one runnable distributed application installed. A distributed application is
an application running on several computers or processors and exchanging
information between them (Weber 1998).

OSI Layer Number Layer Name Example

5-7 Application HTTP, FTP, SMTP etc.

4 Transport TCP, UDP

3 Network IP

1-2 Network Access IEEE 802.x etc.

Fig. 4. The Internet Protocol Stack (adapted from Weber 1998)

Web Services: Potential and Future

 10

Distributed applications can be loosely or tightly coupled. Tightly coupled
distributed applications operate on a shared memory (e.g. a single database). Data-
integrated applications are tightly coupled, though they not necessarily need to be
distributed applications. Loosely coupled distributed applications have their own
private memory (internal state/database) and communicate using messages. Web
services are a set of technology components and standards that make integration of
loosely coupled distributed applications easier.

Figure 5 depicts an example of a loosely coupled distributed application. It is
important to realize that this is in effect a client/server implementation: requests or
method calls are sent from the left side (client) to the right side (server), from where
requested data or processing results are returned. Communication is completely based
on open Internet and Web service standards like the Internet protocol stack from
figure 4.

2.2 Composed Web Services

‘There are two types of Web services – simple and complex. Simple Web services
provide basic request/response functionality, are typically not transactional in nature,
and provide simple HTTP-S/SSL based security. They are developed supporting three
primary Internet standards – SOAP, WSDL and UDDI. Complex Web services can be
characterized as multi-party, long-running business conversations, that involve
sophisticated security, such as non-repudiation and digital signatures, as well as
business-to-business collaboration and business process management’ (Oracle 2001)
As a general rule of thumb, simple Web services (as they were described in the
previous chapters) should be implemented stateless, i.e. with no access or use of
information not contained in the input message (Foster et al. 2004). Following Foster
et al., this tends to enhance reliability and scalability, because a stateless service can
be restarted following failure without concern for its history and prior interactions.
Multiple instances of stateless services can be created for load balancing. Though
stateless services themselves have no durable internal state, they can nevertheless
interact with stateful resources (e.g. databases), so responsibility for state
management can be delegated to these external resources.

Fig. 5. Example of a simple distributed Application based on Internet Technology

HTTP

TCP

IP

IEEE 802.x

SOAP, WSDL,
HTML

HTTP

TCP

IP

IEEE 802.x

SOAP, WSDL,
HTML

Web Services: Potential and Future

 11

The search functionality as part of the Amazon Web Services and in particular of the
Amazon E-Commerce Service (http://www.amazon.com/webservices) providing
access to Amazon’s product inventory listings (by returning a Item object or an Items
collection) is an example for a simple stateless Web service. Amazon also offers a
remote shopping cart. The remote shopping cart functionality however is a set of
operations that can be executed subsequently. The state of the shopping cart is
managed by the Amazon database, but a CartID is returned after creation of a
shopping cart that can be used for further requests. Subsequent operations on a single
shopping cart (e.g. add items, clear cart) are a very simple example of an interactive
‘manage shopping cart’ process based on Web services technology.

Operations of simple Web services can be composed to reflect business processes
and offered as a single service afterwards (Hündling et al. 2003). Composition of
operations is the way to create composed Web services, the same what Oracle calls
complex services (as mentioned in the quotation above). Functionality of an existing
software system for example can be decomposed into rather fine-grained operations,
wrapped into several Web services. These rather simple services can then be invoked
by services of higher value. An additional, directed control flow must be introduced to
manage the time or logical dependencies inside and in-between the composed
services. Composition can be done recursively, spanning different levels of
granularity. In other words, composed services on the upper levels can invoke simple
services as well as other composed services. Composed services aggregate and hide
low-level business functionality.

The top-level services, providing higher-value business functionality, can represent
activities related to a business process. A business process is defined as a set of
business activities being necessary to handle a business transaction. The single
business activities can be processed within different organizational units, but are
usually connected by time or logical dependencies. Business activities run
coordinated, either parallel or successively. They are executed manually or computer-
based, and their purpose is to reach a certain goal. Within an organizational unit they
serve the purpose of reaching a business goal (Grässle et al. 2004).

Business activities have a well-defined interface, regarding possible inputs and
possible outputs. Business activities are connected via transitions. If conditions exist
that make clear which transitions become active after completion of an activity, and
which do not, then an activity can have more than one outgoing transition. Web
service operations can be seen as an implementation of activities in this model.

Process modeling is the domain of Workflow Management Systems (WFMS). For
obvious reasons the combination of Web services and existing Workflow
Management Systems is hence a promising approach. Web services simplify the
deployment of business functionality inside and in-between organizations. Processes
involving partners in different organizational units and in particular outside an
enterprise can be realized on the base of Web service standards.

Operations offered by Web services are activities in a defined control flow. These
operations are described and can be located by browsing service registries. They can
be called from the inside and outside of an enterprise using SOAP messages. In a
workflow context, SOAP messages are a form of triggers that start, continue or end a
business process. When appropriate configured and secured (or when not appropriate
secured), SOAP messages can even pass enterprise firewalls.

Web Services: Potential and Future

 12

Many business standards software vendors already have workflow engines
integrated into their software solutions. Additionally, the Business Process Execution
Language (BPEL), which is part of the still-evolving Web service standards, supports
the modeling of composed services and control flows while providing means to store
a global process state (Hündling et al. 2003). Hence the integration goal of managing
the control flow can be reached with process modeling. This goal pursued by process
integration approaches addresses the behavior of a system from a user perspective.

Coming back to the EDI example, it is important to mention that EDI-like SOAP
messages transporting business documents like purchase orders, invoices or even
CAD drawings can trigger state transition in business processes, hence support the
automation of various processes over the Internet or another network.

By composing Web services and defining control flows in a process model, an
additional process layer on top of business functionality is provided. This process
layer is easier to adapt to dynamic changes, as it is separated from implementation
aspects for the most parts. Hence additional flexibility and maintainability are some of
the benefits of Web services in the domain of workflow management. Disadvantages
however are increasing complexity and decreasing overall performance, especially
when service granularity is too low.

Existing process models are usually static and predefined. The possibility of
dynamic invocation of Web services, i.e. choosing one out of a set of candidate Web
services from a repository, can add dynamic aspects to static process models. With
activities being nodes in a process model, one can think about certain standard nodes
that can be reused in many processes. Apart from workflow-related nodes (branches,
joins or common services like for example mailing or messaging nodes), one of these
standard nodes for example could be a generic node taking decision rules as input
parameters and returning an appropriate Web service based on the given rules. The
rule inference engine itself can be implemented as a Web service. Instead of rule
inference (Zeng et al. 2003), other artificial intelligence (AI) techniques can also be
used.

In reality, existing software solutions may not be structured to support static or
even dynamic composition of Web services yet. There are usually many
interdependencies hidden deep inside of program code, even in object-oriented
systems. This complexity can vary from slightly complex to extremely complex,
depending on the extent of the software solution. So these applications have to be
reviewed first, and in some cases existing business functionality has to be reorganized
or reprogrammed (e.g. Bayer et al. 2004). In any case, the database layer can usually
continue to exist without changes.

To execute composed Web services, an extensive central infrastructure (see
chapter 3.2) is needed to manage the distributed functionality. This infrastructure
must at least provide an environment for development of the process models (plan),
an environment for creation and administration of simple and complex services
(develop), as well as a runtime environment for the execution of processes (run). In
particular, this runtime environment must provide means to execute long-running
distributed transactions. This infrastructure will here be called composition engine.

As an example for how to use composed Web services, an idea introduced by Geng
et al. in 2003 is now discussed. Smart Marketplaces integrate various service
providers and thus offer personalized services for consumers or business users over

Web Services: Potential and Future

 13

the Internet. Geng et al. mention Expedia.com offering consumers to ‘customize
complete leisure trips to meet their individual preferences’ as an example. Consumer
portals are outlined where the backend integration of functionality among different
enterprises forming an alliance is done with composed Web services, in opposite to
situations where each service provider only offers his own (Web) services to his
customers. Integration of complementary Web services could really offer an
additional value to customers, and it opens possibilities for entrepreneurs to new
marketing opportunities and cross-selling their products. It should be mentioned that
the main front-end of such marketplaces still has to be a conventional website
consumers are already comfortable with. So except for B2B integration partners
themselves, Web services are almost invisible (transparent) to end-users.

2.3 Service Integration

In this chapter, an example of an object-integrated system from a single-enterprise
perspective is presented. This system depicted in figure 6 is an evolution of the data-
integrated system shown in figure 2. Integration based on Web services is an object
integration approach (compare to Burbeck 2000). Web services are based on specific,
commonly accepted, open standards and implement only a few object-oriented ideas.
For example there are no classes (just interfaces), and inheritance is not defined for
Web services, though this would surely be possible (interface inheritance). So the
Web services approach might be better called service integration or more specifically
Web service integration, though it has a strong relationship to object integration.
Popularity and broadly accepted open standards may be the most important reasons to
distinguish service integration from object integration.

Service integration can be seen as a simplification of the object integration
approach, transporting the most successful ideas into an Internet environment and
casting them into a lightweight approach based on open standards. So the object-
oriented integration approach in a Web services context will here be called service
integration.

It is striking that figure 6 is much more extensive than the previous examples. This
is mainly because of the Internet coming into visibility. The Internet as a global
communication platform evolved since the 1990s till now. When it comes to public
networks like the Internet, enterprise data and functionality has to be secured against
any unauthorized access. Hence it might be sensible to introduce a semi-private zone
or domain between the public domain (Internet) and the private domain of an
enterprise. Access restrictions between the Internet domain and the semi-private
domain may be lower than restrictions between the semi-private and the private
domain.

Direct access to the databases is not necessary under normal circumstances,
because private Web services represent a service-oriented interface to access or
update business data. Private services should be accessible from the private or semi-
private domain, but not directly from the public domain. So access to private
databases is only possible from the private domain. Access from the semi-private
domain may be subjected to strict rules.

Web Services: Potential and Future

 14

Semi-private services are accessible from the inside or outside of an enterprise.
They can either be publicly available (e.g. registered to public repositories), or only
for a closed group of users (requiring some means of authentication). Semi-private
services should not access private databases directly when receiving messages, but
rather invoke private services (low-level or high-level) for further processing. Hence
semi-private services can be seen as public accessible entry points, but they only
invoke private services that have the exclusive rights to operate on private data. It is
remarked that semi-private services provide indirect access to private data while they
can be public accessible, that’s why they are called semi-private here.

Because Web services in general and semi-private services in particular operate
similar to Web servers (see chapter 2.1.3), semi-private services can be hosted on an
existing Web server with extended capabilities. In general, Web services are often
implemented as an add-on for existing Web servers (e.g. http://ws.apache.org/).

Clients from inside an enterprise can browse private or public registries or invoke
public or semi-private services directly. They could also invoke other enterprises’
semi-private services (B2B integration). Clients from the Internet can browse only
public registries, or they can invoke semi-private services directly (rather in B2B
scenarios). It is more likely that access to semi-private services of an enterprise is
provided to customers or consumers via a deployed application or a Web application
(e.g. a portal or Internet marketplace).

Public repositories are maintained by independent institutions and can be accessed
by everyone. Private repositories on the other side should be – like private databases –
only accessible from the private domain. They are the ‘yellow pages’ of business
functionality of an enterprise and therefore restricted to internal use.

Finally, the composition engine provides an infrastructure for the execution of
composed Web services. These composed services can be made accessible as single
services; hence the composition engine is a service provider, too. This means that
composed services can be registered to the private registry; and composed services
can be invoked just like other (simple) private services. When it comes to the
Enterprise Services Architecture (ESA), the composition engine will play a central
role in this service-integrated system (see chapter 3.2).

Fig. 6. Example of a service-integrated distributed System

Permanent Connection

Temporary Connectionpublic
domain

semi-private
domain

Internet

Public
Repository

Private
Network

Private
Services

Private Database

Web Server
(Semi-private

Services)

Composition
Engine

Public
Repository

Private
Repository

private
domain

Web Services: Potential and Future

 15

It is noted that the scenario presented is only one of many possible scenarios. This
new flexibility facilitated by Web services can also be seen as a thread. There are still
many uncertainties how an optimal service-integrated system will look like. The right
level of functional decomposition – not too low to degrade performance, but also not
too high to prevent reuse – depends on the purpose of a given system; generalities
cannot be found easily. On the other side, it is obvious that service integration will
initially increase the overall complexity of a system, though later improvements in
system functionality are made easier. Hence a clear strategy for Web services rollout
is needed before service integration can be translated into action.

3 The Future of Web Services

3.1 Service-oriented Architecture

The Service-oriented Architecture (SOA) is the basic idea behind service integration.
The term Service-oriented Architecture was introduced by IBM researcher Steve
Burbeck in 2000. Service-oriented systems consist of loosely coupled distributed
objects (Web services) that are registered to a central repository and hence can be
invoked dynamically. In fact, the combination of central and distributed components
is the base of success of the Service-oriented Architecture. This simple concept has
made the Internet a reliable platform for information exchange, as well as it is the
foundation of data integration. Replication of data, repositories or services can be
used to avoid a potential bottleneck.

Web services are a current implementation of the Service-oriented Architecture,
though SOA being a generic concept not bound to any specific implementation
(Hündling et al. 2003). As much as one knows about Web services now, as much does
one know about the Service-oriented Architecture. But it is even simpler: in a system
that has a Service-oriented Architecture, each component plays one of only 3 possible
roles. Every system component is either a service requestor, a service provider or a
service broker (see figure 7). If there is something that is not a service requestor, a
service provider or a service broker, it is not part of this system. The system
components interact using messages; they are loosely coupled. This is the only form
of possible interaction between the system components. Hence the Service-oriented
Architecture is a strictly reduced view on a distributed system (the real world). Figure
6 for example contains a Service-oriented Architecture.

Service requestors and service providers are decoupled. A service broker is the
intermediary who brings them together. The broker pattern is the essential
architectural element of the Service-oriented Architecture, and it is often found in
other object integration approaches like OMG CORBA or Microsoft DCOM as well.

With Web services being an implementation of the Service-oriented Architecture, a
repository is a service broker, a client is a service requestor and a server is a service
provider. A server publishes (SOAP) its available services to a central repository
(UDDI). A client can search these services (SOAP, WSDL) in the repository to find
the service that answers its needs. It can then bind the service and invoke the
according operations (SOAP).

Web Services: Potential and Future

 16

The biggest potential of the Service-oriented Architecture lies in easily connecting
two arbitrary separated systems if they both have been built on open Web service
standards. The technical integration of such systems will require less time, it will be
more reliable and future changes in the service-integrated system will be easier. In
reality, integration solutions from different vendors still have some incompatibilities
(Hündling et al. 2003), but hopefully these problems will be overcome in the near
future.

In summary, Web services are a simplification of object integration concepts, as
well as an implementation of the Service-oriented Architecture, hence an
implementation of the broker pattern designed for loosely coupled distributed
systems. Integration of service-oriented systems is here called service integration.

3.2 Middleware as a Starting Point

Middleware is a shared, multi-purpose communication infrastructure to connect
distributed applications. It provides several communication mechanisms like for
example message passing, message queuing, remote procedure calls and object
invocation (Siedersleben et al. 2003). Middleware plays an important role in making
integration of enterprise applications (EAI) reliable. However, inter-organizational
collaboration was always hampered because of the lack of standards among different
middleware solutions, which made B2B integration projects expensive and long-
running ones. Web service standards will help to overcome these problems.

Software vendors already offer several products (e.g. Microsoft .NET, IBM
WebSphere, BEA WebLogic, SAP NetWeaver) that promise vendor-independent
interoperability by supporting open Web service standards. These products provide a
runtime environment for Web services. Middleware can receive messages, stores
them safely and dispatches them to attached Web services, including error handling.
The above introduced composition engine is part of an extended middleware solution.

Fig. 7. Service Roles and Interactions (adapted from Burbeck 2000)

Service
Broker

Service
Provider

Service
Requestor

search
find

bind

publish

Web Services: Potential and Future

 17

With Web services, existing middleware solutions will be enriched with new
functionality to plan, build and run simple as well as composed services. In the future,
enterprises can concentrate on the integration of business processes. Software vendors
will provide standard solutions that will minimize possible technical problems. So
enterprises can concentrate on what to do, not how to do it (compare to Burbeck
2000).

Following a Meta Group survey among 289 medium-sized or large German
enterprises, 77% of them plan to implement a Service-oriented Architecture as least
inside the organization in 2005. For end of 2006, 75% of them plan to extend this
architecture into B2B scenarios (Reiter 2004-1).

The objectives of the first wave are to consolidate and further integrate an existing
system of separated applications, either only in occasional organizational units or for
the enterprise as a whole. An Enterprise Service Bus (Kossmann et al. 2004), i.e. a
whole enterprise application landscape integrated with Web services being the one
and only integration technology, may be a long-term, evolutionary strategy.

The second wave will focus on integration with selected external partners, but even
more on integrated processes along the supply chain, including suppliers as well as
customers. Following the survey, consumers are not part of the strategy yet.

Service integration is an integration technology that is suitable for either intra-
organizational enterprise application integration (EAI) as well as for inter-
organizational B2B integration. They will replace or supplement proprietary
integration solutions and will be the preferred integration technology in the future.
Middleware will provide a universal base technology for service integration.

3.3 Enterprise Services Architecture

The Enterprise Services Architecture (ESA) is a strategy of the German enterprise
resource planning (ERP) software vendor SAP, though there seem to be some similar
approaches like the NATO C3 Technical Architecture (http://nc3ta.nc3a.nato.int).
Known SAP products are for example R/2, R/3 and the mySAP business suite. SAP
has more than 24000 enterprise customers and over 84000 installations worldwide
(http://www.sap.com). SAP is one of the market leaders in ERP.
The Enterprise Services Architecture was first presented by SAP in 2003 (Bayer et al.
2004) and is a recent approach to combine the technical service integration approach
with business process integration, i.e. to add more semantics to the Service-oriented
Architecture (compare to Burbeck 2000). ESA is built on SAP NetWeaver, SAP’s
middleware solution supporting Web service standards.

Similar to the above presented idea of Smart Marketplaces, the Enterprise Services
Architecture will enable enterprises to built Intranet and Internet portals or other Web
applications with backend functionality being provided by Web services or composed
Web services. These services will be invoked depending on actions a user takes on the
front-end. Messages sent from clients to service providers will be events that trigger
business processes. Hence, bringing business processes to the Web, enabling e-
business and collaboration without boundaries, as well as further automation of
existing business processes is the vision.

Web Services: Potential and Future

 18

The path to an Enterprise Services Architecture can be understood most easily by
taking current existing application landscapes inside enterprises into account. SAP
R/2, SAP R/3, mySAP business suite applications (e.g. CRM, SCM), as well as most
other currently purchasable standard business software systems, are data-integrated
systems. So most enterprises are currently operating with a set of (hopefully) data-
integrated systems. These systems have been installed and adapted during the past
years, usually with high investments involved. So these systems have to be considered
when introducing a Service-oriented Architecture.

The combination of the service integration scenario (depicted in figure 6) with
these data-integrated applications can lead – after some abstractions – to a basic
model of the Enterprise Services Architecture as it is depicted in figure 8.

The client/server paradigm and three-layer architecture are basic principles of
modern system architectures, so they are used here to roughly structure the model. A
data-integrated enterprise application usually has a three-layer architecture and a
single database; a preexisting set of enterprise applications can be recognized on the
right side of the figure. Notice that they implement the hidden functionality of Web
services as it was already depicted in figure 3 (hatched background).

Web services and the composition engine are located in the business logic or
application layer, above the database layer and below the user interface. In
NetWeaver, counterparts are called Web Application Server (WAS) and eXchange
Infrastructure (XI). The composition engine alias XI will play a central role in ESA
(Bayer et al. 2004). Notice that the Service-oriented Architecture from figure 7 can be
recovered within figure 8, too (dark background). A service repository is a service
broker, composition engine and Web services are service providers, and all of them
can be contacted by a client. Every component in ESA can be reached over the
network, and components can interact with each other.

Because existing applications will continue to be used as they were used before,
the SOA components are located besides these applications, and not above. A single
business process layer on top of existing applications might be a long-term goal on
the path to an Enterprise Service Bus (ESB), but for now and for at least the next 10-

Fig. 8. The Enterprise Services Architecture

Web ServiceWeb ServiceWeb Service

Data-
integrated
Enterprise
Application

Web Service

Data-
integrated
Enterprise

Applications
Web Services

Client

Service
Repository

Composition
Engine

Web Service

Data-
integrated
Enterprise
Application

User
Interface

Business
Logic

Database

Client

Server

Network

Database DatabaseDatabaseDatabase

Web Services: Potential and Future

 19

20 years, SOA and existing applications will be used parallel, so the Enterprise
Services Architecture broadens the existing business logic layer instead of forming
the single interface to the business layer; hence it is an evolutionary strategy.

It is not shown here that the user interface functionality on the client side may not
only be realized by a proprietary client application or a local Web application, but
also by dedicated Web servers, portal servers (‘UI servers’) or by Composite
Applications (SAP 2004), resulting in a so called thin client, i.e. for example a simple
Web browser.

A client can access the business functionality provided by a data-integrated
application by invoking an appropriate Web service. This Web service hides the
complexity of the underlying application. A client can also invoke composed services
by contacting the composition engine, which then invokes the appropriate simple
Web services. The repository serves as a dictionary of business functionality and is
the first instance a client in search for specific business functionality usually contacts.

The most striking innovation within the Enterprise Services Architecture is an
additional service-oriented access layer. This technical process layer can be used to
automate processes as it provides access to high-level and low-level business
functionality. A business process view can be put on top. In fact SAP cooperates with
the German consulting company IDS Scheer AG, resulting in the ARIS business
modeling toolset to become tightly integrated into SAP NetWeaver.

After SAP has continuously expanded its suite of products in the recent years, SAP
today no longer has one single core product (R/3), but several specialized solutions
that can be bough by customers one after another. So with the Enterprise Services
Architecture, SAP has a powerful toolset to integrate its several existing and future
standard products. The most likely way SAP will go is to introduce reference
processes that customers can adapt to their needs afterwards. The simplest possible
adaptation is to extend these standard processes, e.g. integrate a third-party product
into the control flow. However, deep changes to these standard processes will still
require a lot of work. So flexibility is raised, but unlimited flexibility cannot be
reached without a price. Unfortunately, descriptive programming of business
processes was not invented yet.

Web services tend to raise system complexity, but most of this complexity is
hidden behind the interfaces, so from a business perspective, it may look like
complexity in fact has been lowered. But as soon as one has to look behind these
interfaces, he/she will suddenly face the total complexity of the system. So remember
that Web services just hide complexity, in any case it does not disappear magically.
As standard software vendors continuously improve their products, Web services will
hide the implementation details of the ‘real’ products from the outside world.
However, it might become necessary to change the interface of a Web service due to
new functionality. So SAP might introduce a versioning concept for Web service
interfaces to ensure downward compatibility. Repositories may be used by a client to
find the right version of an interface.

In this context, it is very important to realize that Web services have been, are, and
will be a technical view on a system. On the other side, business models have been,
are, and will be a user view on a system. Somewhere, these different views will clash.

The combination of both views can describe the behavior of a system as a whole
(Ferstl et al. 1998), i.e. behavior from a technical perspective (service interactions) as

Web Services: Potential and Future

 20

well as behavior from a user perspective (control flow). The business view is a world
with only a few, rather simple rules, processes, activities and control flows. The
technical world however is much more complex, there are stricter rules, extensive
listings of source code, there are potential side effects between different modules,
potential side effects of source code changes, there are data types, databases,
transactions and so on. So there will always be a gap between these two worlds, and it
is important to realize that this gap cannot easily be closed. So if one changes a
business process model, this implies in the most cases changes in technical model and
implementation, too. If one changes the technical model, i.e. the interfaces, she/he has
to adapt the business model. If there is one system and two consistent views on this
system, then if either of these views is changed, this results to two systems, one being
the desired, new system, and the other being the existing system. Manual changes to
the existing system are then necessary to close the newly emerged gap. Both technical
as well as business process experts are needed for this task.

Products offered by third-party software vendors can be integrated into ESA,
provided that SAP and these vendors cooperate and set up compatible standard
processes. In general, the integration of complex systems still requires hard work of
experts, technical and business process experts. Web services are just a common
ground to start from, not more, and not less. The assumption that anyone can integrate
technical systems just with a few mouse clicks only because functionality is wrapped
with Web services is certainly an illusion. Development of new functionality and
reorganization of existing functionality is often needed after constructing the desired
view on a system, and the effort to implement these changes in such a complex
environment should not be underestimated.

Technical as well as process standards may help to reduce the complexity of the
real world. Network standards, database standards, Web service standards, repository
standards and reference business processes are some that are to be mentioned in the
context of the Enterprise Services Architecture. High standardization usually gives an
extra value to software investments. In the technical domain, another recent shift in
SAP’s strategy concerns its proprietary programming language ABAP, which will be
reinforced by the Web programming language J2EE (http://java.sun.com) and the
open source development environment Eclipse (http://www.eclipse.org) in the future.
So it seems that even SAP will more and more bet on open (technical) standards.

An Enterprise Services Architecture is mainly addressing larger companies, but it
might also be a chance for smaller companies to realize the vision of a completely
integrated IT landscape more quickly, because of their usually lower automation level
and lower overall complexity of business processes reached by now. Forming
Business alliances, outsourcing of processes and even enterprise takeovers (Reiter
2004-2) are made easier if the partners can integrate their IT systems using or
enhancing an existing Service-oriented Architecture.

To sum up, the Enterprise Services Architecture is a long-term strategy to build a
service integration layer on top of existing data-integrated applications, and a process
integration layer on top of the service integration layer. It has to be proven if this
approach will speed up system development while ensuring software quality and
reliability at the same time. Standard processes, standard system architectures and
standardized base technologies, wherever possible, may be a rough guide through
complexity and flexibility.

Web Services: Potential and Future

 21

4 Summary

4.1 Web Services as a Base Technology

In this paper, current developments in the area of the Service-oriented Architecture
have been discussed. A short overview of the history of integration was presented.
The data flow integration approach which came down from the early times of
distributed computing was presented. Consistent databases were soon realized as the
most valuable asset in an IT landscape, so data integration was the next concept,
regarding that data should rather be stored centralized than distributed. Object
integration is the latest approach in technical integration. Object integration is the first
approach that takes structure and behavior of a technical system into account; hence
object integration approaches provide a complete technical view.

Objects encapsulate functionality and data. Objects have a public interface that
other objects can invoke by sending messages. Web services are distributed objects.
For various reasons, and to distinct the highly-standardized service-oriented
integration approach for loosely coupled distributed systems from earlier object
integration approaches, the term service integration was here introduced to refer to
integration based on Web services and the Service-oriented Architecture.

The technical framework for service interaction, usually implemented within
middleware, is also called Web services, which can easily lead to some confusion.
Essential Web service standards with a very close connection to the Service-oriented
Architecture are SOAP, WSDL and UDDI. Furthermore, the importance of object-
oriented concepts, central service brokers and distributed service providers, XML and
open Internet standards contributing to the success of Web services was mentioned.

Web services can be composed to provide high-level business functionality. These
composed services can be seen as activities in business processes. However, an
invocation of a single composed service can result in interactions between an
enormous amount of objects until a reply is sent back – functionality in a technical
system is very fine-grained. Business processes on the other side are rather coarse-
grained. The gap between a technical view and a business process view will remain,
though it may be reduced with the help of standard technology and sophisticated
development tools. Technical as well as business process experts are still needed.

Two examples shown were Smart Marketplaces and the Enterprise Services
Architecture, ESA being SAP’s strategy to add more semantics to SOA. Finally it has
been shown that even now, enterprises are taking the first steps towards a Service-
oriented Architecture. With Web services as a base technology, they can concentrate
on what to do, not how to do it.

4.2 Conclusion

Service integration combined with data integration is the state-of-the-art in technical
integration. Web services are the technological counterpart to process integration in
loosely coupled distributed systems. Service integration is accompanied by three new
technological developments: XML, Web service standards and public networks.

Web Services: Potential and Future

 22

Service integration has the potential to absorb data flow integration (e.g. EDI),
especially in scenarios were maintainability and flexibility criteria outweigh
performance criteria. This is in particular true for integration scenarios in loosely
coupled distributed systems, and it should be true for many more business-related
integration scenarios inside or in-between enterprises. In short, existing EDI standards
can be reused to give semantics to service integration.

Technically seen, Web services are not much more than highly standardized
‘SOAP servers’ reinforced by service repositories. Maintainability and Flexibility are
increased; flexibility on the other side might be the biggest thread. Web services need
semantics to be useful. Fine-grained (low-level) Web services decrease performance
and raise complexity, but raise flexibility of the system. Coarse-grained (high-level)
services raise performance and lower complexity, but lower flexibility, too. The
optimal granularity cannot easily be determined.

Technical integration based on Web services has to be separated from business
process integration. These are two different views on a technical system. There is a
gap between both views. A service-oriented view on system functionality might
however reduce the gap between both worlds. In particular, tools can be introduced
that support the development of new functionality based on existing standard
processes. Hence, Web services as part of a long-term strategy can support faster and
cheaper development of new functionality while preserving the possibility of reusing
already existing functionality.

So that might be the potential and the future of Web services: First a step back,
encapsulating proprietary systems and EDI functionality, building a common ground,
then a step forward, enabling intra- and inter-organizational collaboration based on
process models that are easier to change and maintain.

A question often asked is what can be done with Web services. This is certainly an
approach starting from the wrong side. There must be an initial business goal; and
only the next question is how this goal can be reached by using a technical system.
Web services are only one of many possible technologies that can be used, though
they may become the single common integration technology.

References
Bayer, M. and Niemann, F. (2004) ‘SAPs langer Weg zur ESA’, COMPUTERWOCHE,

online at: http://www.computerwoche.de/index.cfm?pageid=254&artid=57375
[accessed 20 November 2004]

Bellwood, T., Clément, L., Ehnebuske, D., Hately, A., Hondo, M., Husband, Y. L.,
Januszewski, K., Lee, S., McKee, B., Munter, J. and von Riegen, C. (2002) ‘UDDI Version
3.0, Published Specification’, online at: http://uddi.org/uddi-v3.00-published-20020719.htm
[accessed 20 December 2004]

Birman, K. P. (2004) ‘Like It or Not, Web Services Are Distributed Objects’,
Communications of the ACM, Vol. 47 no. 12, 60-62

Burbeck, S. (2000) ‘The Tao of e-business services’, IBM Corporation,
online at: http://www-106.ibm.com/developerworks/webservices/library/ws-tao/
[accessed 23 December 2004]

Chandrasekaran, S., Miller, J. A., Silver, G. S., Arpinar, B. and Sheth, A. P. (2003)
‘Performance Analysis and Simulation of Composite Web Services’,
Electronic Markets, Vol. 13 (2), 120-132

Web Services: Potential and Future

 23

Committee on Innovations in Computing and Communications: Lessons from History,
National Research Council (1999) ‘Funding a Revolution: Government Support for
Computing Research’, National Academy Press Washington,
online at: http://www.nap.edu/readingroom/books/far/contents.html
[accessed 20 December 2004]

Ferstl, O. K. and Sinz, E. J. (1998) ‘Grundlagen der Wirtschaftsinformatik’, 3rd edition,
Oldenbourg Verlag München

Foster, I., Frey, J., Graham, S., Tuecke, S., Czajkowski, K., Ferguson, D., Leymann, F., Nally,
M., Storey, T. and Weerawaranna, S. (2004) ’Modeling Stateful Resources with Web
Services’, Globus Alliance, online at: http://www-106.ibm.com/developerworks/library/ws-
resource/ws-modelingresources.html [accessed 25 December 2004]

Geng, X., Huang, Y., Whinston, A. B. (2003) ‘Smart marketplaces: a step beyond
Web services’, Information Systems and e-Business Management, Vol. 1 (1), 15-34

Grässle, P., Baumann, H. and Baumann, P. (2004) ‘UML 2.0 projektorientiert’,
Galileo Press Bonn

Hündling, J. and Weske, M. (2003) ‘Web Services: Foundation and Composition’,
Electronic Markets, Vol. 13 (2), 108-119

Kossmann, D. and Leymann, F. (2004) ‘Web Services’,
Informatik Spektrum, Band 27 Heft 2 (April 2004), 117-128

Ogbuji, U. (1999) ‘XML: The future of EDI?’,
online at: http://uche.ogbuji.net/tech/pubs/xmledi.html [accessed 21 December 2004]

Ogbuji, U. (2002) ‘The Past, Present and Future of Web Services, part 1’,
online at: http://www.mywebservices.org/index.php/article/articleview/663/1/24/
[accessed 21 December 2004]

Ogbuji, U. (2002) ‘The Past, Present and Future of Web Services, part 2’,
online at: http://www.mywebservices.org/index.php/article/articleview/679/1/24/
[accessed 21 December 2004]

Oracle Corporation (2001), ‘Oracle9i Application Server Web Services: Technical White
Paper’, online at: http://www.oracle.com/technology/tech/webservices/webservices_twp.pdf
[accessed 2 January 2005]

Reed, A. (2003) ‘Object-Oriented Programming and Objectivist Epistemology: Parallels and
Implications’, The Journal of Ayn Rand Studies 4, no. 2 (Spring 2003), 251-284,
online at: http://www.objectivistcenter.org/events/advsem03/ReedOOP.pdf
[accessed 27 December 2004]

Reiter, M. (2004-1) ‘SOA verbindet zukünftig Firmen’, Computer Zeitung 46/2004/hd
Reiter, M. (2004-2) ‘Serviceorientierung macht Wartung komplex’, Computer Zeitung 46/2004
SAP AG (2004) ‘Enterprise Services Architecture, Composite Applications, SAP xApps und

mySAP Business Suite Überblick’, online at:
http://www.sap.com/germany/media/mc_239/50068052.pdf [accessed 9 January 2005]

Siedersleben, J. et al. (2003) ‘Softwaretechnik: Praxiswissen für Softwareingenieure’,
2nd edition, Hanser Verlag München

W3C Web Services Architecture Working Group (2004-1) ‘Web Services Architecture’,
online at: http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
[accessed 25 December 2004]

W3C Web Services Architecture Working Group (2004-2) ‘Web Services Architecture Usage
Scenarios’, online at: http://www.w3.org/TR/2004/NOTE-ws-arch-scenarios-20040211/
[accessed 3 January 2005]

Weber, M. (1998) ‘Verteilte Systeme’, Spektrum Verlag Heidelberg
Wikipedia entry (2004) ‘Electronic Data Interchange’,

online at: http://en.wikipedia.org/wiki/EDI [accessed 21 December 2004]
Zeng, L., Benatallah, B., Lei, H., Ngu, A., Flaxer, D. and Chang, H. (2003) ‘Flexible

Composition of Enterprise Web Services’, Electronic Markets, Vol. 13 (2), 141-152

